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The inertial instability of equatorial shear flows is studied, with a view to understand-
ing observed phenomena in the Earth’s stratosphere and mesosphere. The basic state
is a zonal flow of stratified fluid on an equatorial β-plane, with latitudinal shear. The
simplest self-consistent model of the instability is used, so that the basic state and
the disturbances are zonally symmetric, and a vertical diffusivity provides the scale
selection. We study the interaction between the inertial instability, which takes the
form of periodically varying disturbances in the vertical, and the mean flow, where
‘mean’ is a vertical mean.

The weakly nonlinear regime is investigated analytically, for flows with an arbitrary
dependence on latitude. An amplitude equation of the form dA/dt = A− k2A

∫ |A|2dt
is derived for the disturbances, and the evolving stability properties of the mean
flow are discussed. In the final steady state, the disturbances vanish, but there is a
persistent mean flow change that stabilizes the flow. However, the magnitude of the
mean flow change depends strongly on the initial conditions, so that the system has a
long memory. The analysis is extended to include the effects of Rayleigh friction and
Newtonian cooling, destroying the long-memory property.

A more strongly nonlinear regime is investigated with the help of numerical
simulations, extending the results up to the point where the instability leads to
density contour overturning. The instability is shown to lead to a homogenization of
fQ around the initially unstable region, where f is the Coriolis parameter, and Q is
the vertical mean of the potential vorticity. As the instability evolves, the line of zero
Q moves polewards, rather than equatorwards as might be expected from a simple
self-neutralization argument.

1. Introduction
Inertial instability arises from an imbalance of forces that occurs in rotating fluid

systems. As diagnosed by Rayleigh (1917), the instability may occur if the magnitude
of the absolute angular momentum decreases away from the rotation axis. The
instability has been extensively studied since G. I. Taylor’s celebrated laboratory
experiments of the flow of a viscous fluid between concentric rotating cylinders
(Taylor 1923; Drazin & Reid 1981, and references therein). In such a configuration,
without background rotation or stratification, the instability is often referred to as
centrifugal instability.

It has long been recognized that inertial instability might occur within the Earth’s
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atmosphere and oceans, both on planetary scales (e.g. Dunkerton 1981; Hitchman
et al. 1987; Tomas & Webster 1997), and on smaller scales (e.g. Potylitsin & Peltier
1998). The inertial instability of planetary scale flows can be investigated by con-
sidering a thin layer of inviscid stably stratified fluid moving relative to the planet
in a zonal flow, with speed u(φ) at latitude φ. It can be shown (e.g. Bowman &
Shepherd 1995) that such a flow is stable to zonally symmetric perturbations if
everywhere fQ > 0. Here, f = 2Ω sinφ is the Coriolis parameter, where Ω is the
planetary angular velocity, and Q is the potential vorticity, which here takes the
same sign as the component of the absolute vorticity normal to the planetary sur-
face.

If fQ < 0, we say there is a region of anomalous vorticity, and the flow may be
unstable. If the latitudinal shear is non-zero at the equator, then Q will be non-zero at
the equator, and hence Q will be anomalous on one side or other of the equator. Such
unstable flows may occur in the equatorial stratosphere and mesosphere, where at
solstice the zonal flow has little vertical shear, but does have a strong and persistent
cross-equatorial shear associated with the large-scale meridional circulation. The
shear weakens through the equinoxes and appears again, with the opposite sign, at
the following solstice, so that the equatorial region of anomalous vorticity is located
in the winter hemisphere.

The first theoretical study of inertial instability in this equatorial context was
made by Dunkerton (1981). He studied the simplest possible problem likely to be of
interest: the linear instability of a uniformly stratified fluid with constant latitudinal
shear and Prandtl number unity, on an equatorial β-plane. Both the basic flow
and the disturbances were taken to be zonally symmetric. The linear instability
theory was subsequently extended to systems with Prandtl number not equal to unity
(Dunkerton 1982; see also Edwards & Richards 1999), to zonally asymmetric modes
on a zonally symmetric basic state (Boyd & Christidis 1982; Dunkerton 1983), and
to systems with a zonally asymmetric basic state (Dunkerton 1993; Clark & Haynes
1996).

The linear theory predicts that the instability will take the form of overturning cells
in the meridional plane. Indeed, there are observations of structures in the equatorial
upper stratosphere and lower mesosphere bearing a strong resemblance to unstable
modes of the linear stability theory (e.g. Hitchman et al. 1987; Hayashi, Shiotani
& Gille 1998; Smith & Riese 1999). Despite some unresolved questions about the
preferred vertical scale of the instability (Griffiths 2002), the structures are attributable
to inertial instability of the cross-equatorial shear, and it appears that there are several
large-amplitude inertial instability events per year. Similar-looking cellular structures
in the equatorial oceans may also be due to inertial instability (e.g. Hua, Moore & Le
Gentil 1997).

Even though the theory of linear equatorial inertial instability is well developed
for simple flow configurations, there are still unresolved questions as to the nonlinear
evolution of the instability. Will the system reach a final steady state? If so, will it
be a state of rest? What happens to the mean flow? Can anything be said about
the inertial stability of the evolved system? Do the nonlinear structures resemble
the linear structures? Previous studies have gone some way towards answering such
questions. Hua et al. (1997) performed some numerical simulations of the nonlinear
instability of a uniform shear flow, with oceanic applications in mind. In a sys-
tem with Rayleigh friction, Newtonian cooling and enhanced horizontal diffusion,
they showed how the instability equilibrates to a state with baroclinic zonal jets.
Zhao & Ghil (1991) performed a weakly nonlinear analysis for a two-layer system,
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with atmospheric applications in mind, although their formulation artifically restricts
attention to modes less unstable than the fasting growing modes. Other relevant
contributions have been made for the related case of symmetric baroclinic instability
in the atmosphere (Thorpe & Rotunno 1989), and for an unstratified f-plane iner-
tial instability, with oceanic applications in mind (Shen & Evans 1998). However,
there remains a need to make some more general conclusions about the nonlinear
instability.

Here, the nonlinear evolution of equatorial inertial instability is considered for a
basic state with arbitrary latitudinal shear. The flow is zonally symmetric and hy-
drostatic, with Prandtl number unity, and there is no horizontal diffusion, Rayleigh
friction or Newtonian cooling. In § 2, the stability problem is formulated, and the
linear theory is reviewed. A set of non-dimensionalized equations is introduced,
with just one control parameter, so that the linear stability properties can be sim-
ply classified. In § 3, the weakly nonlinear evolution is described, based on the
results of a perturbation analysis. A detailed study of the mean-flow change and
the evolving stability properties is made, providing a clear insight into the nature
of nonlinear inertial instability. In § 4, the theoretical predictions are compared
with numerical simulations of the nonlinear problem for a particular basic flow,
and the simulations are extended into the moderately nonlinear regime. The na-
ture of the mean-flow change is described. In § 5, the effects of Rayleigh friction
and Newtonian cooling upon the nonlinear evolution are considered. The result-
ing analytic theory qualitatively reproduces the numerical results of Hua et al.
(1997). In § 6, there is a summary and discussion of the results, and of their
possible relevance to inertial instability in the equatorial stratosphere and meso-
sphere.

2. Formulation and linear stability
2.1. The governing equations

We study a stratified fluid in three dimensions, with background rotation, on an
unbounded equatorial β-plane. We use a set of Cartesian coordinates, with the x-axis
pointing eastwards, the y-axis pointing northwards, and the z-axis as a local vertical
coordinate. The x- and z-directions are either periodic or unbounded. The fluid
flow speeds are u, v, and w in the x-, y- and z-directions, respectively. We define
a fluctuating buoyancy acceleration σ(x, t) such that the density ρ takes the form
ρ = ρ00 + ρ0(z)− (ρ00/g)σ(x, t), where ρ00 is a constant reference value, and ρ0(z)
describes the background stable stratification.

For the remainder of this study, we suppose that (i) the flow is zonally symmetric, i.e.
∂/∂x = 0, (ii) the flow is hydrostatic, (iii) the flow can be modelled using the Boussinesq
approximation (expected to be valid to the extent that the inertial instability occurs
in thin vertical layers), and (iv) the diffusion coefficients for heat and momentum
have the same value ν. Furthermore, for the structures to be studied, the vertical
length scale is much smaller than the horizontal length scale, so we approximate the
diffusion operator ν∇2 as ν∂2/∂z2.

The restriction to zonal symmetry allows us to introduce a streamfunction ψ(y, z, t)
for the flow in the meridional plane. We write v = −∂ψ/∂z and w = ∂ψ/∂y, so
that the continuity equation ∇ · u = 0 is automatically satisfied. It is then possible
to eliminate the pressure from the formulation by introducing an equation for the
x-component ξ of the relative vorticity. Using the traditional approximation for
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large-scale geophysical flows (Phillips 1966), the complete set of equations is

∂u

∂t
+ u · ∇u+ f

∂ψ

∂z
= ν

∂2u

∂z2
, (2.1a)

∂ξ

∂t
+ u · ∇ξ − f ∂u

∂z
− ∂σ

∂y
= ν

∂2ξ

∂z2
, (2.1b)

∂σ

∂t
+ u · ∇σ +N2 ∂ψ

∂y
= ν

∂2σ

∂z2
, (2.1c)

where f = βy, ξ = ∂2ψ/∂z2, and N2(z) = −(g/ρ00)∂ρ0/∂z > 0.
We will study the stability of a flow u = u0(y), ψ = σ = 0, with constant ∂ρ0/∂z

and therefore constant buoyancy frequency N, to zonally symmetric disturbances u′,
ψ′ and σ′. An important quantity will be the potential vorticity Q, which we define as

Q =
(fez + ∇× u) · ∇ρ

∂ρ0/∂z
, (2.2)

where the denominator, ∂ρ0/∂z, is a constant included simply for convenience. The
basic state potential vorticity Q0(y) = f − ∂u0/∂y is simply equal to the vertical
component of the absolute vorticity.

2.2. The case of uniform shear

Separable solutions of the linear system can be found analytically when the basic flow
has uniform latitudinal shear. It is useful to review this problem, originally solved by
Dunkerton (1981), since these results motivate the theoretical framework to be used
in the following sections.

We write the uniform shear flow as u0 = Λy, and take Λ > 0 for definiteness.
This leads to a band of anomalous vorticity occupying 0 < y < Λ/β. Ignoring terms
quadratic in disturbance amplitude in (2.1a)–(2.1c), we look for latitudinally bounded
disturbances of the form ψ′(y, z, t) = Re{Ψ (y) eimz+st}. Thus, Re(s) is the growth
rate, and m is the vertical wavenumber, which we take to be positive without loss of
generality. The system then reduces to a Hermite equation for the latitudinal structure
Ψ (y) with a discrete set of eigenmodes, the most unstable of which has dispersion
relation

(s+ νm2)2 =
Λ2

4
− Nβ

m
. (2.3)

Introducing a coordinate Y shifted to the centre of the unstable region, and the
equatorial Rossby length L, defined by

Y = y − Λ

2β
, L(m) =

(
N

βm

)1/2

, (2.4a , b)

the most unstable mode is of the form

ψ′ ∝ Re{e−(1/2)(Y /L)2

e(imz+st)}, σ′ ∝ Re{Y e−(1/2)(Y /L)2

e(imz+st)}.
There is an overturning motion in vertically stacked cells of height π/m, and of lati-
tudinal scale L. In the regions of rising and sinking air there are density perturbations,
which are largest at Y = ±L, i.e. at y = 1

2
Λ/β±L. The density perturbations give

rise to the temperature perturbations observed in events of inertial instability in the
equatorial atmosphere. Using (2.3), we see that all growing modes have m > 4Nβ/Λ2,
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or equivalently using (2.4b) that L < 1
2
Λ/β, so the maximum density perturbations

both lie within the initially unstable region.

If ν = 0, then the maximum possible growth rate s = 1
2
Λ is attained as m → ∞.

Thus, for a real fluid we must consider the effect of diffusion, however small. As
pointed out by Dunkerton (1981), the diffusivity may be interpreted as an eddy
diffusivity either resulting from an earlier occurrence of the instability itself on much
smaller scales, or from some background turbulence. As is well known, the concept of
eddy diffusivity and eddy Prandtl number are of questionable validity, but the present
state of knowledge does not seem to justify anything more elaborate. For this study,
we can choose to interpret the diffusivity as a molecular diffusivity, or to cautiously
interpret the diffusivity as an eddy diffusivity.

If ν 6= 0, and since κ = ν, the stability properties can be characterized by a single
non-dimensional parameter ε, given by

ε =

(
2νN2β2

Λ5

)1/3

. (2.5)

There is instability if and only if ε < εc = 5−5/6. Then viewed as a function of m, the
growth rate has a single maximum at m = m∗, where

m∗(ε) =
1

ε

Nβ

Λ2
m̂∗(ε).

Here, m̂∗(ε) is a non-dimensional function, satisfying m̂∗(0) = 1, and monotonically
increasing to 51/6 as ε → εc (Griffiths 2002). Thus, the most unstable wavenumber
scales like

ms =
1

ε

Nβ

Λ2
=

(
Nβ

2νΛ

)1/3

. (2.6)

We see the competition between stratification and the β-effect encouraging smaller
vertical scales, and diffusion and cross-equatorial shear encouraging larger vertical
scales.

2.3. A more general formulation for arbitrary shear flows

The scales for inertial instability on a uniform shear flow can be used to construct
a set of non-dimensionalized equations for studying equatorial inertial instability in
more general cases. We retain constant ∂ρ0/∂z, but allow u0(y) to have variable shear.
However, we assume that near to the equator the shear has a typical magnitude Λ that
is important in determining the growth rate and structure of the inertially unstable
modes. Thus, we expect that (i) the growth rate will scale like 1

2
Λ, (ii) the modes

will be centred a distance of order Λ/β from the equator, (iii) the most unstable
vertical wavenumber will scale like ms, given by (2.6), and (iv) the latitudinal structure
will scale like Ls = L(ms), given by (2.4b). Hence, we introduce non-dimensional
coordinates ŷ, ẑ and t̂ defined by

ŷ =
y − 1

2
(Λ/β)ŷc

Ls
, ẑ = msz, t̂ = 1

2
Λt.

We fix ŷc, assumed to be of O(1), to be the centre of the unstable region, i.e. the
latitude at which (−fQ0) is maximized.
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It is also worth introducing non-dimensional physical variables û, ψ̂, σ̂, v̂, ŵ and ξ̂,
which we do according to

u = Ls
Λ

2
û, ψ =

Ls

ms

Λ

2
ψ̂, σ =

N2

ms
σ̂, v = Ls

Λ

2
v̂, w =

1

ms

Λ

2
ŵ, ξ = msLs

Λ

2
ξ̂.

Thus, when v̂ = 1, a fluid parcel will move one non-dimensional latitudinal distance
in one non-dimensional time unit. The other scalings are chosen to be compatible
with this. We also introduce a non-dimensionalized potential vorticity Q̂ = 2Q/Λ, so
that

Q̂ =

(
f̂ − ∂û

∂ŷ

)(
1 +

∂σ̂

∂ẑ

)
+
∂û

∂ẑ

∂σ̂

∂ŷ
, (2.7)

from (2.2). With these scalings, the full set, (2.1a)–(2.1c), of zonally symmetric Boussin-
esq equations, with Prandtl number unity, is

∂û

∂t̂
+ û · ∇̂û+ f̂

∂ψ̂

∂ẑ
= ε

∂2û

∂ẑ2
, (2.8a)

∂ξ̂

∂t̂
+ û · ∇̂ξ̂ − f̂ ∂û

∂ẑ
− 4ε

∂σ̂

∂ŷ
= ε

∂2ξ̂

∂ẑ2
, (2.8b)

∂σ̂

∂t̂
+ û · ∇̂σ̂ +

∂ψ̂

∂ŷ
= ε

∂2σ̂

∂ẑ2
, (2.8c)

where

f̂(ŷ, ε) = ŷc + 2ε1/2ŷ, v̂ = −∂ψ̂
∂ẑ
, ŵ =

∂ψ̂

∂ŷ
, ξ̂ =

∂2ψ̂

∂ẑ2
. (2.9)

The system is characterized by just one non-dimensional parameter ε = (2νN2β2/
Λ5)1/3, a ratio of the stabilizing influences in the system – diffusion, stratification, and
the β-effect – to the destabilizing influence of cross-equatorial shear. We can view ε
as a sort of non-dimensional diffusivity, and as ε decreases we expect the system to
become more inertially unstable.

In this non-dimensionalization, the terms associated with the horizontal component
of the Coriolis parameter, neglected under the traditional approximation used here,
are of magnitude ε1/2Ω/N. Since for instability we expect ε . 1, it is reasonable to
neglect these terms provided Ω/N � 1. This condition will certainly be satisfied in
the stratosphere and mesosphere. However, for studying oceanic inertial instability, it
may not be justifiable to neglect these terms, as discussed by Hua et al. (1997).

2.4. Linear stability revisited

It is worth examining the linear stability problem within this formulation. Omitting
the hats from the non-dimensional variables, as will be done from hereon, the non-
dimensionalized linear equation for the disturbance streamfunction ψ′ is Lψ′ = 0,
where

L
(
−i

∂

∂z
,
∂

∂t
, ε,

∂

∂y
, y

)
= 4ε

∂2

∂y2
+

(
∂

∂t
− ε ∂

2

∂z2

)2
∂2

∂z2
+ fQ0

∂2

∂z2
. (2.10)
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Here, Q0(y, ε) = f − ∂u0/∂y is the basic state potential vorticity, which, like f = yc+
2ε1/2y, will depend on ε as well as y. For latitudinally bounded disturbances of the
form ψ′(y, z, t) = Re{Ψ (y) eimz+st}, (2.10) reduces to

L
(
m, s, ε,

∂

∂y
, y

)
Ψ (y) = 0, Ψ → 0 as |y| → ∞, (2.11)

where, from (2.10),

L
(
m, s, ε,

∂

∂y
, y

)
= 4ε

∂2

∂y2
− m2(s+ εm2)2 − m2fQ0. (2.12)

Multiplying (2.11) by Ψ ∗, the complex conjugate of Ψ , and integrating across the
domain gives

(s+ εm2)2 =

∫ ∞
−∞

(−fQ0)|Ψ |2dy − (4ε/m2)

∫ ∞
−∞
|dΨ/dy|2dy∫ ∞

−∞
|Ψ |2dy

. (2.13)

We note that

(i) (s + εm2)2 is real. Thus, from (2.12), L(m, s, ε, ∂/∂y, y) is a real operator, and
we can choose Ψ (y) to be a real function.

(ii) If fQ0 > 0 everywhere, then (s + εm2)2 < 0 and the flow is linearly stable to
zonally symmetric disturbances.

(iii) If fQ0 < 0 somewhere, then instability is possible, and the maximum possible
growth rate is ((−fQ0)max)

1/2. However, if m is too small then the stratification inhibits
the vertical motion necessary to make the parcel exchange, and s < 0. The stabilizing
effects of stratification become negligible as m → ∞, but if ε 6= 0 then in this limit
the growth rate decreases without bound owing to the vertical diffusion. Thus, for
sufficiently large ε, it is possible that no unstable modes will exist. A region of
anomalous vorticity need not be inertially unstable – diffusion is able to completely
stabilize the system.

Furthermore, as shown in the Appendix, for the unstable modes, the maximum
growth rate increases monotonically as ε decreases, and as ε→ 0 there exists a mode
such that s2 → (−fQ0)max. Since as ε → ∞ all vertical wavenumbers becomes stable,
for some value of ε the system is neutrally stable.

2.5. The dispersion relation

Because of the particular form of L, we can write

L(m, s, ε, ∂/∂y, y)Ψ (y) = D(m, s, ε)Ψ (y), (2.14)

for some function D(m, s, ε). The dispersion relation is just D(m, s, ε) = 0, although, in
general, it is impossible to write down the function D. Equation (2.14) is particularly
useful because it enables us to relate the unknown function D directly to the known
linear operator L, albeit via an unknown eigenfunction Ψ (y). For instance, multi-
plying (2.14) by Ψ (y), integrating across the domain, differentiating with respect to s,
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Re(s)

mmc

ε = εc

ε < εc

0

O (δ)
O (δ1/2)

Figure 1. The dispersion relation. The thick line shows s(m) at critical conditions ε = εc; there is a
single global maximum at wavenumber mc. The thin line shows s(m) at weakly unstable conditions
ε = εc(1− δ/δ0); there is an envelope of unstable wavenumbers around m = mc.

and using the self-adjoint property of L yields

Ds =

∫ ∞
−∞
ΨLsΨdy∫ ∞
−∞
Ψ 2dy

, (2.15)

where Ds = ∂D/∂s, and Ls is the partial differential of L(m, s, ε, ∂/∂y, y) with respect
to s. From (2.12), Ls = −2m2(s+ εm2), independent of y, so that

Ds = −2m2(s+ εm2). (2.16)

Thus, without solving (2.11) for Ψ (y), we have derived information about the function
D(m, s, ε). Such information is useful in interpreting the dispersion relation (see § 3.1),
and will prove essential to the weakly nonlinear analysis (see § 3.5).

3. The weakly nonlinear analysis
We now turn to understanding the nonlinear evolution of inertial instability. We

first aim to understand the simplest possible problem, that is the nonlinear evolution
when the system is only weakly unstable. In this regime, the parameter ε is just less
than the critical value for stability, which might correspond to the existence of a
weak horizontal shear, or a strong vertical diffusivity. Thus, we automatically exclude
the study of strongly nonlinear instability. However, we are able to investigate this
weakly nonlinear regime analytically, and the generality and completeness of our
analysis will enable us to draw strong conclusions. At the outset it is worth noting
that even though there might be a relatively strong vertical diffusion, there will be
no horizontal diffusion within the system, so mean flow changes are brought about
solely by nonlinear momentum advection.

3.1. Weakly unstable conditions

We continue to study the inertial instability of a zonal flow u0(y) with arbitrary
dependence on latitude. As described in § 2.4, if fQ0 < 0 somewhere, there is a critical
value ε = εc such that the linear growth rate s 6 0 for all m, and such that s = 0 for
some m = mc. We assume that this critical wavenumber mc is unique. The situation is
illustrated in figure 1.
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If we differentiate the dispersion relation D(m, s, ε) = 0 with respect to m at fixed ε,
viewing s as a function of m, we see that ∂s/∂m = −Dm/Ds. Since s(m) has a maximum
at m = mc when ε = εc, and since from (2.16) Ds(mc, 0, εc) = −2εcm

4
c , we must

have Dm(mc, 0, εc) = 0. Similarly, ∂2s/∂m2 = −Dmm/Ds at m = mc, and, by the same
reasoning, we must have Dmm(mc, 0, εc) 6 0. We will assume that Dmm(mc, 0, εc) < 0.
We summarize by writing

D(mc, 0, εc) = 0, Dm(mc, 0, εc) = 0, Dmm(mc, 0, εc) < 0. (3.1)

For the remainder of the analysis, we will be interested in the flow regime when ε
is just less than εc, that is when ε is just marginally smaller than the critical value for
neutral stability. We set ε = εc(1− δ/δ0), with δ � 1, where

δ0 = εc
Dε

Ds

∣∣∣∣
(mc,0,εc)

> 0 (3.2)

is a useful normalizing factor (using (3.1) and the definition ofL(m, s, ε), it is possible
to check that δ0 > 0). Expanding the dispersion relation in a Taylor series about the
point m = mc, s = 0, ε = εc, and using (3.1), we see that for wavenumbers m close
to mc,

s ≈ δ − 1
2
(m− mc)2 Dmm

Ds

∣∣∣∣
(mc,0,εc).

(3.3)

The parameter δ measures the strength of the instability, and is the leading-order
growth rate of the most unstable modes. Setting s = 0 in (3.3), we see that the range
of unstable wavenumbers (m − mc) scales like δ1/2, assuming that Ds/Dmm = O(1) at
(mc, 0, εc).

3.2. Formulation

In this weakly nonlinear regime, an O(δ1/2) range of wavenumbers around m = mc
is unstable. Whilst the most complete description of the instability would involve
following the evolution of such an envelope of unstable modes, here the evolution
of only the most unstable mode, in isolation, is described. Thus, the evolution will
be determined by the self-interaction of the most unstable mode with its harmonics.
For a first study of the weakly nonlinear regime, this approach will prove sufficient.
The more general problem treating an envelope of unstable modes will be discussed
briefly in § 5.2.

We will use the nonlinear equations of motion, (2.8a)–(2.8c). To benefit from the
assumption of weak nonlinearity, the variables must be properly scaled. Since the
growth rate s ∼ δ, we must introduce a slow-time variable

τ = δt.

Since this is a nonlinear problem, it is also important to correctly scale the perturbation
quantities, which we expect to grow only to a small (non-dimensional) amplitude. It
is possible to show that nonlinear saturation terms become as important as the linear
growth terms when the perturbations are of order δ, and hence that the optimal
scaling for the analysis will be u′ ∼ ψ′ ∼ σ′ ∼ δ. Further, we expand these rescaled
quantities in terms of δ, and therefore we write:

u′ = δu1 + δ2u2 + · · · , ψ′ = δψ1 + δ2ψ2 + · · · , σ′ = δσ1 + δ2σ2 + · · · . (3.4)



254 S. D. Griffiths

With these changes, equations (2.8a)–(2.8c) become

δ
∂u1

∂τ
+ δu1 · ∇u1 +

(
Qc − δεc

δ0

∂Q0

∂ε

∣∣∣∣
ε= εc

)
∂

∂z
(ψ1 + δψ2)

= εc

(
1− δ

δ0

)
∂2

∂z2
(u1 + δu2) + O(δ2), (3.5a)

δ
∂ξ1

∂τ
+ δu1 · ∇ξ1 −

(
fc − δεc

δ0

∂f

∂ε

∣∣∣∣
ε= εc

)
∂

∂z
(u1 + δu2)− 4εc

(
1− δ

δ0

)
× ∂

∂y
(σ1 + δσ2) = εc

(
1− δ

δ0

)
∂2

∂z2
(ξ1 + δξ2) + O(δ2), (3.5b)

δ
∂σ1

∂τ
+ δu1 · ∇σ1 +

∂

∂y
(ψ1 + δψ2) = εc

(
1− δ

δ0

)
∂2

∂z2
(σ1 + δσ2) + O(δ2), (3.5c)

where fc(y) = f(y, ε = εc) = yc+2ε
1/2
c y, and Qc(y) = Q0(y, ε = εc). The linear operator

L(−i∂/∂z, ∂/∂t, ε) becomes

L
(
−i

∂

∂z
, δ
∂

∂τ
, εc

(
1− δ

δ0

))
=L

(
−i

∂

∂z
, 0, εc

)
+ δLs

(
−i

∂

∂z
, 0, εc

)
∂

∂τ

−δεc
δ0

Lε

(
−i

∂

∂z
, 0, εc

)
+ O(δ2).

Note that the dependence of the operators on ∂/∂y and y has been suppressed, since in
the analysis (m, s, ε) gives the only active dependency. Now retaining terms quadratic
in the disturbance amplitude, the master equation for the disturbance streamfunction
is

Lψ1 = δ

(
N1 −Ls

∂ψ1

∂τ
+
εc

δ0

Lεψ1 −Lψ2

)
+ O(δ2), (3.6)

where all the operators are evaluated at (−i∂/∂z, 0, εc), and where

N1 = εc
∂2

∂z2
(u1 · ∇ξ1)− 4εc

∂

∂y
(u1 · ∇σ1)− fc ∂

∂z
(u1 · ∇u1). (3.7)

It is possible to examine the limit δ → 0 by gathering together terms of like order
in δ in each of these equations. The general procedure will be to do this first for (3.6),
enabling ψi to be evaluated, and then to use (3.5a)–(3.5c) to evaluate ui and σi. The
initial conditions will be that at τ = 0 the spatial structure of the disturbance is given
by that of the most unstable linear mode.

3.3. Leading-order equations

The leading-order terms of (3.6) are

L(−i∂/∂z, 0, εc, ∂/∂y, y)ψ1 = 0.

We look for a mode of the form ψ1(y, z, τ) = Re{Ψ1(y, τ) eimz}, where m = m0 + δm1 +
O(δ2). For this form of solution −i∂/∂z = m, so that

L(−i∂/∂z, 0, εc) =L(m0, 0, εc) + δm1Lm(m0, 0, εc) + O(δ2). (3.8)
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Thus, the leading-order master equation becomes

L(m0, 0, εc, ∂/∂y, y)Ψ1 = 0, Ψ1 → 0 as |y| → ∞.
For there to exist bounded solutions to this equation some eigencondition must be
satisfied. Here, the relevant one will, of course, be that m0 = mc (the critical wave-
number). The function Ψ1(y, τ) will have the latitudinal structure of the corresponding
neutral eigenfunction, which we write simply as Ψc(y). As described in § 2.4, we can
choose Ψc(y) to be real, and we normalize it so that∫ ∞

−∞
Ψ 2
c dy = 1. (3.9)

Thus, the leading-order streamfunction is

ψ1(y, z, τ) = Re{A(τ)Ψc(y) eimz},
where m = mc + O(δ), and where A(τ) is a complex amplitude function. We cannot
determine the behaviour of A(τ) at this level of approximation.

From (3.5a) and (3.5c) the leading-order zonal momentum and buoyancy equations
are

Qc
∂ψ1

∂z
= εc

∂2u1

∂z2
,

∂ψ1

∂y
= εc

∂2σ1

∂z2
.

On integration with respect to z they yield the expressions

u1 = Re

{
− i

mcεc
QcAΨce

imz

}
+ ū1(y, τ), σ1 = Re

{
− 1

εcm2
c

A
dΨc

dy
eimz

}
+ σ̄1(y, τ),

where ū1(y, τ) and σ̄1(y, τ) are functions of integration, to be determined. Substituting
these expressions into the leading-order vorticity equation, obtainable from (3.5b),
reveals that σ̄1 = σ̄1(τ), and hence that σ̄1 = 0 (by conservation of mass). However,
we cannot determine ū1(y, τ), that is the vertical mean part of the leading-order
perturbation zonal velocity, at this level of approximation. Because of the diffusive
nature of the leading-order balance, this function need not vanish, and indeed it will
be crucial to the process of nonlinear equilibration. However, if we wish to recover
the linear mode at τ = 0, then we must have ū1(y, 0) = 0.

3.4. First-order equations

Before evaluating the first-order streamfunction and associated fields, it is advisable
to complete the leading-order solution. We need to evaluate ū1(y, τ), and we can do
this by considering the first-order zonal momentum balance, obtainable from (3.5a):

∂u1

∂τ
+ u1 · ∇u1 + Qc

∂ψ2

∂z
− εc

δ0

∂Q0

∂ε

∣∣∣∣
ε= εc

∂ψ1

∂z
= εc

∂2u2

∂z2
− εc

δ0

∂2u1

∂z2
. (3.10)

A little calculation shows that

u1 · ∇u1 = Re

{
1

2εc

d

dy

(
QcΨ

2
c

) |A|2 + imcQ1ΨcAeimz − 1

2εc

dQc
dy

Ψ 2
c A

2e2imz

}
, (3.11)

where Q1 = −∂ū1/∂y. Hence, taking the vertical average of (3.10), and integrating
with respect to τ implies that

ū1(y, τ) = − 1

2εc

d

dy
(QcΨ

2
c )

∫ τ

0

|A(τ′)|2dτ′, (3.12)

using the boundary condition ū1(y, 0) = 0. The leading-order solution is now complete.
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We turn to calculating the first-order streamfunction. The O(δ) terms of the master
equation (3.6) are

L
(
−i

∂

∂z
, 0, εc,

∂

∂y
, y

)
ψ2 =N1 −Ls

∂ψ1

∂τ
+
εc

δ0

Lεψ1 − m1Lmψ1. (3.13)

The final term comes from the O(δ) term of (3.8), and the operators on the right-hand
side are now all evaluated at (mc, 0, εc), accurate to O(δ). To progress from (3.13) we
clearly need to evaluate N1, defined in (3.7). Noting that

u1 · ∇ξ1 = 0, u1 · ∇σ1 = Re

{
i

2mcεc

(
Ψc

d2Ψc

dy2
−
(

dΨc

dy

)2
)
A2e2imz

}
,

and using (3.11), we can do this, and hence show that a more explicit version of
(3.13) is

L
(
−i

∂

∂z
, 0, εc

)
ψ2 =

(
−dA

dτ
Ls +

εc

δ0

ALε − m1ALm + m2
cfcQ1A

)
Ψce

imz

− 2i

mc

(
d

dy

(
Ψc

d2Ψc

dy2
−
(

dΨc

dy

)2
)
− m2

c

2εc
fc

dQc
dy

Ψ 2
c

)
A2e2imz,

(3.14)

where all the operators on the right-hand side are now evaluated at (mc, 0, εc).

3.5. The solvability condition

We will not attempt to solve (3.14). Enough useful information can be gained from
the solvability condition associated with the component of the particular integral
proportional to eimz . If we write this component of ψ2 as Re{Ψ2(y, τ)e

imz}, then the
leading-order eimz component of (3.14) is

LΨ2 = −dA

dτ
LsΨc +

εc

δ0

ALεΨc − m1ALmΨc + m2
cfcQ1AΨc,

where all the operators are evaluated at (mc, 0, εc). Since L is self-adjoint, we have∫ ∞
−∞ΨcLΨ2dy =

∫ ∞
−∞Ψ2LΨcdy = 0, so necessarily

0 = −
(∫ ∞
−∞
ΨcLsΨcdy

)
dA

dτ
+
εc

δ0

(∫ ∞
−∞
ΨcLεΨcdy

)
A

−m1

(∫ ∞
−∞
ΨcLmΨcdy

)
A+ m2

c

(∫ ∞
−∞
fcQ1Ψ

2
c dy

)
A.

The integrals involving the operatorL can be related to differentials of the dispersion
relation D(m, s, ε), using expressions of the form (2.15) and the normalization condition
(3.9). Then recalling, from (3.1), that Dm(mc, 0, εc) = 0, and substituting for δ0 from
(3.2), we find that equivalently we must have

dA

dτ
= A− k2A

∫ τ

0

|A(τ′)|2dτ′, (3.15)

where, using (3.12) for ū1 (and hence Q1), and (2.16) for Ds(mc, 0, εc),

k2 =
1

4ε2
cm

2
c

∫ ∞
−∞
fcΨ

2
c

d2

dy2
(QcΨ

2
c ) dy. (3.16)
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Since Ψc(y) is real, k2 is real. It will be assumed that k2 > 0, although it has not been
proved that this must necessarily be the case for an arbitrary shear flow. If k2 > 0
then, as will be shown below, the amplitude equation (3.15) implies that A(τ) will only
grow to a magnitude of O(1). This corresponds to a non-dimensional disturbance
amplitude of O(δ), and hence no more terms need be considered in the amplitude
equation – a consistent approach.

Since m1 does not appear in (3.15) and (3.16), the amplitude equation describes the
evolution of any mode with |m − mc| = O(δ). It is natural to consider the evolution
of the most unstable mode, but we are not restricted to this case alone.

3.6. Equilibration

The weakly nonlinear analysis is now complete, since we have a complete spatial and
temporal description of the leading-order solution as δ → 0. The evolution equation
(3.15) is to be solved subject to the initial condition A = A0 at τ = 0. Since k2 is real,
even though A may be complex, it will have constant argument. Thus, the problem
reduces to solving for |A|, and we can easily show that

|A| = (1 + k2|A0|2)1/2

k cosh((1 + k2|A0|2)1/2(τ− τ∗)) , τ > 0, (3.17)

where τ∗ is a constant given by

τ∗ =
1

2(1 + k2|A0|2)1/2
log

(
(1 + k2|A0|2)1/2 + 1

(1 + k2|A0|2)1/2 − 1

)
. (3.18)

The behaviour is quite simple. A(τ) grows to a maximum amplitude at τ = τ∗ and
then decays towards zero as τ→ ∞. The maximum amplitude |A|max depends on the
initial amplitude |A0|, and it is easy to see that

|A|max =
1

k
(1 + k2|A0|2)1/2.

1/k is an amplitude that naturally arises here – it is the value of |A|max that occurs
in the problem with |A0| → 0. However, if |A0| is of the same order as 1/k, then
the instability grows to a larger amplitude. Physically, this scenario could occur if
the instability were triggered by a large-amplitude wave with the correct sort of
vertical and latitudinal structure, perhaps an equatorial Kelvin wave. In many weakly
nonlinear systems, such as those governed by the Landau equation, the maximum
disturbance amplitude does not depend so crucially on the initial conditions.

Quantities proportional to A, such as the streamfunction or the fluctuating buoyancy
acceleration, tend to zero as τ→∞. However, the magnitude of the mean flow change
is ∫ τ

0

|A(τ′)|2dτ′ =
1

k2
{1 + (1 + k2|A0|2)1/2 tanh((1 + k2|A0|2)1/2(τ− τ∗))}.

Thus, the mean flow change increases monotonically for all τ, and tends to a constant
non-zero amplitude, also dependent on |A0|, as τ → ∞. In that sense the system has
a long memory.

3.7. Linear stability of the evolving mean flow

Inertial instability is driven by a particular property of the mean flow, the particular
property being related to regions where fQ < 0, where the overbar denotes a vertical
mean. During the course of the inertial instability, the mean flow is changed, and it
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is useful to examine the significance of this change. In particular, does the evolved
mean flow correspond to an inertially stable state?

To proceed, we note that during the instability the evolving potential vorticity is

Q(y, z, t) = Q0(y) + δ

(
Q0(y)

∂σ1

∂z
− ∂u1

∂y

)
+ O(δ2),

using (2.7) and (3.4). Thus, Q = Q0(y) + δQ1(y, τ) + O(δ2), where Q1 = −∂ū1/∂y, so
that to leading order, changes in Q are solely due to changes in ū. Therefore, we
analyse the action of the instability by considering the linear stability properties of the
evolving mean flow ū = u0(y) + δū1(y, τ). To do this, we treat the evolving mean flow
as effectively frozen in time, and consider the growth of linear disturbances on this
frozen state. From (2.10) and (2.11), the governing linear equation for the disturbance
streamfunction φ(y, z, t) is{

L
(
−i

∂

∂z
,
∂

∂t
, εc

(
1− δ

δ0

)
,
∂

∂y
, y

)
+ δfQ1

∂2

∂z2

}
φ = 0. (3.19)

Since the mean flow changes are only of O(δ), we can analyse the stability properties
by a perturbation analysis. We write φ(y, z, t) = Re{Φ(y)eimz+st}, and

Φ(y) = Φ0(y) + δΦ1(y) + · · · , m = m0 + δm1 + · · · , s = s0 + δs1 + · · · .
Then the leading-order terms of (3.19) are L(m0, s0, εc, ∂/∂y, y)Φ0(y) = 0. We wish to
look for the most unstable linear mode, and by our previous assumptions, at ε = εc
the maximum value of s0 for latitudinally bounded solutions is s0 = 0, when m = mc.
Therefore, we set s0 = 0 and m = mc, and the leading-order streamfunction Φ0(y) is
just the neutral streamfunction Ψc(y).

The O(δ) terms of (3.19) are

LΦ1 + m1LmΨc + s1LsΨc − (εc/δ0)LεΨc − m2
cfcQ1Ψc = 0,

where the operators are all evaluated at (mc, 0, εc). The solvability condition for Φ1(y),
formed by multiplying this equation by Ψc(y) and integrating across the domain, is

s1 =
εcDε

δ0Ds

∣∣∣∣
(mc,0,εc)

+
m2
c

Ds(mc, 0, εc)

∫ ∞
−∞
fcQ1Ψ

2
c dy ⇔ s1 = 1− k2

∫ τ

0

|A(τ′)|2dτ′,

using (2.16), (3.2), (3.12) and (3.16). Comparing with (3.15), the evolution equation
for A, we see that

s1 =
dA/dτ

A
⇒ s = δ

dA/dτ

A
+ O(δ2),

since s0 = 0. Thus, to first order in δ, the growth rate of linear disturbances on

the evolving mean flow behaves in a simple fashion. Initially, s = δ, the original
growth rate, whatever the value of A0. The instability has had no effect on the
mean flow. At the maximum (streamfunction) amplitude, we see that s = 0: the mean
flow is exactly neutralized to linear disturbances (to leading order in δ). As τ → ∞,
s → −δ(1 + k2|A0|2)1/2. Hence, the final stability properties are dependent upon the
initial conditions, and the larger |A0|, the more stable is the final state.

Note that the above stability analysis is not exact for the complete evolving inertial
instability, since we have ignored the presence of the sinusoidal perturbations of u′, ψ′
and σ′, and of the time-dependence of the mean flow. However, as we approach the
final steady state, both these effects disappear, and the evolving stability analysis
becomes exact.
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3.8. Discussion

The analysis has given us a clear and complete description of the flow. The disturbance
streamfunction grows until the mean flow is neutralized. At this instant, there is a
small disturbance on a neutral mean flow, and naturally, the disturbance neither
grows nor decays. However, the continuing overturning motion induces a further
mean flow change, so that the flow becomes slightly stabilized. The disturbance
streamfunction will then start to decay exponentially. Yet the mean flow change
satisfies ∂ū/∂τ ∝ δ|A|2, and is insensitive to whether the mode is growing or decaying.
Hence, throughout the decay there is a further stabilizing mean flow change. This
mean flow change persists, and the final mean flow is stable.

Even though in these weakly unstable conditions the disturbances are almost in a
diffusive balance, the mean flow is z-independent and the mean flow change is not
directly related to the vertical diffusion. Recalling that there is no horizontal diffusion
in the system, the mean flow change is due solely to the nonlinear momentum
advection term −∂(u′v′)/∂y. This suggests that if we perform numerical simulations
of the nonlinear instability, we should be careful to ensure that the mean flow changes
are indeed independent of any artifical horizontal diffusion introduced for numerical
stability alone.

4. Numerical simulations
There are good reasons for performing some numerical simulations of the nonlinear

evolution of the instability. The first is to assess the accuracy of the weakly nonlinear
analysis. Were the equations derived and solved without error? A second reason is to
assess the applicability of the analysis. Over what range of δ do the predicted results
hold true? A third reason is to extend the results into a more unstable regime. Is
the same qualitative behaviour seen for larger δ? Finally, numerical simulations may
help us to see some features of the neutralization process that we might otherwise
have missed.

4.1. The numerical model

The inertial instability to be simulated is centred near the equator, and dies away
exponentially in latitude. There are two important consequences. First, the horizontal
domain may be truncated to a finite width. Providing the domain is wide enough,
the boundary effects will be negligible. Secondly, it is possible to use a Fourier basis
for the latitudinal structure, even though there will be a discontinuity in the fields
between the northern and southern boundaries of the domain. As explained by Boyd
(2000), since the fields are exponentially small at the boundaries, the discontinuity
will be exponentially small, and hence the error in the Fourier approximation will
be exponentially small too. The vertical domain is periodic, so it is natural to use a
Fourier basis to represent the vertical structure. The nonlinear terms are evaluated
pseudospectrally.

A fourth-order Runge–Kutta method is used to time-step the advective, Coriolis,
and buoyancy terms. This totally explicit treatment of the buoyancy terms leads to a
stability restriction on the dimensional time step ∆t of the form N∆t . 1, although the
high order of the scheme means that this limit is not too restrictive in practice. The
vertical diffusion is applied in an arbitrarily stable infinite-order step. For a Fourier
component with dimensional vertical wavenumber m, at each step this takes the form
φ→ exp(−νm2∆t)φ. There is no explicit horizontal diffusion.
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4.2. The experimental set-up

The dimensional basic state u0 = Λy is used for all the simulations. With the non-
dimensionalization of § 2.3, taking ŷc = 1, this corresponds to

u0 = 2y + ε−1/2, Q0 = 2ε1/2y − 1, ⇒ (−fQ0) = 1− 4εy2 since f = 1 + 2ε1/2y.

The initially unstable region is |y| < 1
2
ε−1/2. From § 2.2, the critical linear conditions

are εc = 5−5/6 and mc = 51/6, and the corresponding normalized eigenfunction is

Ψc(y) =
(mc
π

)1/4

exp(− 1
2
mcy

2).

The dispersion relation for this mode, defined via (2.14), is D = m2−4εm−m2(s+εm2)2.
Hence, we may explicitly evaluate the coefficients in the amplitude equation. We find,
from (3.16), that k2 = 57/12 × (8π)−1/2 ≈ 0.510, and, from (3.2), that the normalizing
factor δ0 = 3 × 5−1/2. Thus, we are in a position to quantitatively test the weakly
nonlinear theory. The approach will be first to demonstrate close agreement between
the theory and the numerical simulations for δ � 1, and then to test the applicability
of the theory for δ 6 0.3. This will extend the results to the point at which the
instability leads to density contour overturning.

The simulations were performed in the domain |y| < 6, so that the centre of
the domain is coincident with the centre of the unstable region, and the domain
width is approximately six times that of the unstable region. The domain height is
taken to be 2π/m∗, where m∗ is the vertical wavenumber of the most unstable linear
mode. Each simulation is initialized with an equatorially confined disturbance of
vertical wavenumber m∗, and run for some time with the nonlinear terms switched
off, to extract the fastest growing linear mode. The linear growth rate is typically in
agreement with the exact value to at least five significant figures. Once this mode has
been extracted, it is rescaled to an appropriate start-up amplitude, and the nonlinear
terms are switched on.

4.3. The weakly unstable regime

4.3.1. Verification of the time evolution

Simulations were performed with |A0| = 10−4 (i.e. in the regime k|A0| � 1) for
δ = 0.005, 0.01, 0.02, 0.035, 0.05, 0.07 and 0.1. The resolution was 128 latitudinal grid
points × 32 vertical grid points, with a non-dimensional time step ∆t = 0.01. To assess
the accuracy of the amplitude equations in this range, it is useful to consider the
function

Ap(t) =
m∗
2π

∫ 2π/m∗

0

2 exp(−im∗z)
(∫ ∞
−∞
Ψc(y)ψ(y, z, t) dy

)
dz,

where ψ(y, z, t) is the numerical streamfunction. Ap(t) is the projection of the numerical
streamfunction onto the leading-order analytical streamfunction. According to the
weakly nonlinear theory, Ap = δA+ O(δ2).

For δ = 0.005, Ap is given by the theoretical prediction δA to within 2.5%
throughout the whole time evolution. To test the applicability of the theory for larger
δ, the maximum projected streamfunction amplitude |Ap|max is compared with the
maximum predicted amplitude δ|A|max = δ/k. The results, shown in figure 2, indicate
that this relationship does hold good, although the O(δ2) correction appears to be
quite large. Also shown in figure 2 is the time evolution of |Ap| at δ = 0.1, along with
the theoretical prediction. The quantitative deviation between experiment and theory
is becoming quite significant.



Nonlinear evolution of equatorial inertial instability 261

0 0.02

0.05

0.10

0.15

0.20

0.25 0.20

0.15

0.10

0.05

0.04 0.06 0.08 0.10 0.12

(a) (b)

|A
p|

m
ax

|A
p|

0 20 40 60 80 100 120
δ t

Figure 2. (a) The maximum projected numerical amplitude |Ap|max (+, data points) and the
predicted maximum amplitude δ|A|max = δ/k (– – –) against δ, for the simulations with k|A0| � 1.
The difference is proportional to δ2. (b) The time evolution of the projected amplitude |Ap| for the
simulation at δ = 0.1: ——, numerical result; – – –, theoretical prediction.

4.3.2. Verification of the latitudinal structure

For δ = 0.005, the latitudinal structure of the numerically calculated fields is in
good agreement with the theoretical predictions. To assess the difference for larger δ,
we consider the quantity

Up = lim
t→∞

(∫ ∞
−∞

(ū(y, t)− u0(y, ε)− δū1(y, τ))
2dy

)1/4

,

where ū(y, t) is the numerically calculated mean zonal velocity. Here, δū1(y, τ) is the
predicted mean flow change, obtainable from (3.12) as

δū1(y, τ) = −δ
(

5

π

)1/2

(1 + 57/12y − 2× 51/6y2) exp(−mcy2)

∫ τ

0

|A(τ′)|2dτ′.

According to the weakly nonlinear theory, Up = O(δ) as δ → 0. Figure 3(a) shows
Up versus δ, verifying that the theory does correctly predict both the magnitude and
the latitudinal structure of the mean flow change as δ → 0.

By δ = 0.1 the theory is at the limit of its quantitative usefulness. This is not
only evident in the magnitude of the perturbation fields, but also in their latitudinal
structure. Figure 3(b) shows the final mean flow change and the theoretical prediction
for δ = 0.1. Although the theoretical prediction has the correct qualitative behaviour,
there are now significant deviations between it and the numerical result, especially
for y > 0.

It is worth examining some of the consequences of these mean flow changes. The
plot of the mean flow change shows that the instability induces a westward jet north
of y = 0 (the centre of the unstable region), and an eastward jet south of y = 0. Thus,
the disturbance has a mean negative shear around y = 0. Recall that the basic state
has a positive shear across the whole domain, thus producing a region of anomalous
vorticity around y = 0. For the evolved state the negative shear of the mean flow
change around y = 0 has reduced the magnitude of the anomalous vorticity there.
This is the inertial neutralization that has been described by the evolving linear
stability analysis of § 3.7. Further aspects of these neutralized mean flows will be
discussed in § 4.6.
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Figure 3. (a) The quantity Up versus δ, for the simulations with k|A0| � 1. (b) The evolved mean
flow change for the simulation at δ = 0.1: ——, numerical result; – – –, theoretical prediction.
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Figure 4. Disturbance amplitude (that is the globally integrated absolute streamfunction) versus
time, for the simulation at δ = 0.25.

4.4. A moderately unstable regime

For δ > 0.1, the instability can no longer be described quantitatively by the weakly
nonlinear amplitude equations. However, in the range 0.1 < δ 6 0.3, the instability is
not strong enough to lead to density contour overturning, and this regime is accessible
to simple numerical simulations. Results will be given for simulations performed at
δ = 0.15 and 0.20 (at a resolution of 256 latitudinal grid points× 32 vertical grid
points), and for δ = 0.25 and 0.30. Owing to the formation of very large spatial
gradients at δ = 0.25 and 0.30, it was necessary to use 512 latitudinal grid points for
these simulations. Furthermore, using a domain mapping, the local grid point density
was increased between y = 2 and 3.

The simulations for 0.1 < δ < 0.3 display the same qualitative behaviour, and
most aspects may be discussed together. The temporal behaviour is similar to the
weakly unstable case. The disturbance streamfunction grows exponentially, reaches a
maximum amplitude, and then decays exponentially to zero. The final state is one
of uniform stratification, with no meridional flow, but with an adjusted mean zonal
flow. In figure 4, the time evolution of the disturbance streamfunction is plotted
for δ = 0.25. The exponential decay is modified by an oscillatory behaviour. Whilst
the streamfunction maintains approximately the same latitudinal structure during the
decay, it periodically shrinks to a small amplitude and reappears with reversed sign.
This oscillatory behaviour could presumably be described analytically if the weakly
nonlinear analysis were carried out to the next order in δ.

The potential vorticity (PV) and density, at maximum disturbance amplitude, are
shown in figure 5, for the δ = 0.25 run. The fields are still very much dominated
by structures with vertical wavenumbers zero and m∗, and even though the density
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Figure 5. The instability at maximum disturbance amplitude, for δ = 0.25. (a) Potential vorticity.
(b) Density. Only the centre of the computational domain is shown. The equator is at y = −1.08,
and the northern edge of the initially unstable region is at y = 1.08. The zero PV contour is
indicated by a thicker line.

contours are considerably disturbed, they have not yet overturned. The vertical shear
of the horizontal winds, mainly due to ∂u/∂z, but also partially due to ∂v/∂z, leads
to regions where the Richardson number is small. The smallest values occur at, or
near, maximum disturbance amplitude, in regions where the stratification is weak.
For δ = 0.15, 0.20, 0.25 and 0.30, the minimum values are Ri = 1.5, 0.88, 0.57 and 0.23,
respectively.

Near maximum disturbance amplitude, the maximum density perturbation occurs
north of the initially unstable region, at y ≈ 2 (that is y ≈ 1.4Λ/β in dimensional vari-
ables). Figure 6(b) shows the corresponding streamfunction and density perturbation,
for δ = 0.25. For comparison, the streamfunction and density perturbation are also
shown during the linear growth and decay stages of the instability. During the linear
growth, the streamfunction is symmetric about y = 0, the most unstable latitude, and
the maximum density perturbations occur within the unstable region – a consequence
of the linear instability theory, as noted in § 2.2. At maximum disturbance amplitude,
the centre of the overturning motion has drifted northwards. So too has the northern
density extremum, although the southern one has stayed at roughly the same latitude.
During the linear decay, the streamfunction drifts back towards y = 0, but the density
perturbation remains asymmetrical. This behaviour can be interpreted in terms of the
way in which the flow is neutralized.

4.5. Inertial neutralization

Throughout the instability, we expect motion to be strong in regions of anomalous
vorticity. Initially, (−fQ) has a single maximum at y = 0, and the instability responds
by centring the overturning motion about this latitude. In the linear regime, a
perturbation velocity v′(y, z, t) = V (y) cos(mz)est is accompanied by a perturbation
PV Q′ = −v′(s + εm2)−1∂Q0/∂y. Thus, for the uniform shear flow, the mean PV
changes according to

∂Q

∂t
= − ∂

∂y
(v′Q′) =

1

(s+ εm2)

∂

∂y

(
v′2
∂Q0

∂y

)
=

ε1/2e2st

s+ εm2

dV 2

dy
,

since Q0 = 2ε1/2y − 1. For the most unstable mode V 2 ∝ exp(−my2), so

∂Q/∂t > 0 if y < 0, ∂Q/∂t < 0 if y > 0.
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Figure 6. The instability at three different times during the δ = 0.25 run. (i) Streamfunction.
(ii) Density perturbation. (a) During the initial linear growth. (b) At maximum disturbance ampli-
tude. (c) During the linear decay. The vertical dashed lines denote the boundaries of the initially
unstable region.

The mean PV profile pivots about the most unstable latitude y = 0. The situation is
illustrated in figure 7.

The new inertial stability is determined by fQ. The pivoting means that for
y < 0 the flow becomes locally more stable, whilst for y > 0 the flow becomes
locally more unstable. The locally most unstable point shifts northwards. Hence,
the natural response of the inertial instability is to shift northwards as well. We
might anticipate that this sort of process will continue throughout the instabil-
ity. As the cell moves further north, it will be mixing in increasingly less negative
values of PV, so the neutralization will become more effective. Thus, the north-
ward drift of the overturning motion, and the corresponding northward drift of
the poleward density perturbation, are intimately connected with the neutralization
process.
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Figure 7. A schematic view of the neutralization process: · · ·, initial state;
——, initial mean flow change.

4.6. The mean flow change

What does an adjusted mean flow look like in the moderately nonlinear regime? The
adjusted mean PV Q is shown in figure 8, for δ = 0.15, 0.20 and 0.25. The profiles are
taken at maximum disturbance amplitude (interpreted as neutralized profiles, since
the disturbances are neither growing nor decaying), and at the end of the instability
(interpreted as stabilized profiles).

The significance of these particular adjusted profiles is made apparent by consider-
ing the quantity fQ. Recall that fQ determines the strength of the instability. As also
shown in figure 8, in each of the stabilized profiles, fQ has been approximately hom-
ogenized to a small negative value over a broad region around the initially unstable
region. This is the action of the inertial instability in the moderately unstable regime.
It is clear that as δ increases, i.e. as the stabilizing forces decrease, the value of (−fQ)
in this homogenized region decreases, but does not reach zero. This is consistent
with the idea that vertical diffusion can stabilize regions of anomalous vorticity. The
inertial instability need not completely wipe out regions of anomalous vorticity, just
reduce the value of (−fQ). The higher the vertical diffusivity is, and hence the lower
δ is, the greater the value of (−fQ) that can be stabilized. Equivalently, the instability
leads to a homogenization of the angular momentum gradient, rather than of the
angular momentum itself.

Note that since the domain integrated PV is conserved, to balance the increase
in the mean PV over the initially unstable region we must expect a decrease in the
mean PV elsewhere. One such region is in the southern hemisphere, so it actually
leads to an increase in fQ and enhanced inertial stability. The other such region, near
y = 1.5, is in the northern hemisphere, and so it leads to a decrease in fQ and reduced
inertial stability. However, in this region of reduced stability, fQ never falls to a lower
value than elsewhere in the domain. Accompanying these two adjustment regions
are a deepening minimum in the PV just south of the equator, and a corresponding
maximum north of the initially unstable region. In three-dimensional reality these
regions of reversed PV gradients might be wiped out by barotropic instability.

A noteworthy feature of the adjusted profiles, whether at the middle or end of
the evolution, is that the line of zero mean PV actually moves polewards during the
instability. This is consistent with the idea of a weakly diffusive stabilization, but
contrary to the traditional view that inertial stability requires the line of zero PV
to sit at the equator. It is also worth noting that as δ increases, and ε decreases,
the most unstable mode becomes narrower. Despite this, the modes induce a mean
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Figure 8. Mean flow profiles for (a) δ = 0.15, (b) δ = 0.20 and (c) δ = 0.25. (i) Mean potential
vorticity Q, (ii) fQ. In each plot the dotted curve is the initial profile, the thin solid curve is taken
at maximum disturbance amplitude, and the thick solid curve is taken at the end of the instability.
The vertical dashed lines denote the boundaries of the initially unstable region.

flow change over a wider and wider area. The idea that a latitudinally narrow mode
can eventually come to completely neutralize a latitudinally broad region has been
investigated in an unstratified f-plane inertial instability by Shen & Evans (1998).

5. Additional effects
5.1. The inclusion of weak damping

The problem studied in §§ 2–4 is the simplest self-consistent example of nonlinear
inertial equilibration. However, it proves informative to allow for some sort of damping
within the system, since such effects, no matter how weak, can radically alter the
nonlinear evolution.
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Following Hua et al. (1997), it is mathematically convenient to include such effects
by adding terms that damp all the perturbation quantities at the same rate. Thus,
we include the effects of weak damping in our analysis by choosing this rate to be
δα. Then, the linear growth rate changes according to s → s − δα, and hence when
ε = εc(1 − δ/δ0) the leading-order growth rate of the most unstable mode will be
δ(1 − α). To study growing modes, we will require 0 < α < 1. We will formally set
α = O(1), although this does not mean that we cannot subsequently choose it to be
smaller than this.

The weakly nonlinear analysis of § 3 is modified by changing ∂/∂τ to ∂/∂τ+ α. The
latitudinal structure of all the perturbation quantities remains the same, but the time
evolution is altered. In particular, writing

ū1(y, τ) = − 1

2εc

d

dy
(QcΨ

2)B(τ), (5.1)

the mean flow equation, (3.12), becomes(
d

dτ
+ α

)
B = |A|2, B(0) = 0, (5.2a)

using the boundary condition ū1(y, 0) = 0. The evolution equation for A(τ) becomes(
d

dτ
+ α

)
A = A− k2AB, A(0) = A0, (5.2b)

with k2 given by (3.16). The evolution is now governed by the coupled equations
(5.2a) and (5.2b). The undamped system may be recovered simply by setting α = 0.
B(τ), which gives the magnitude of the mean flow change, and k2 are real, so that

even though A(τ) may be complex it will have constant argument. Once again, it
is sufficient to determine the behaviour of |A|. For 0 < α < 1, the evolution is best
illustrated by a phase portrait of |A| versus B. There is an unstable fixed point at
(|A|, B) = (0, 0), and a stable fixed point at (|A|, B) = (α1/2(1− α)1/2/k, (1− α)/k2). The
behaviour of the system, illustrated in figure 9, is radically different to that when
α = 0. The system moves towards the stable fixed point as τ→∞. Thus, A(τ) remains
non-zero for large times, and hence there is a persistent response in the streamfunction
and density perturbation fields. In contrast to the undamped case, the final state is
independent of |A0|. The long-memory property is destroyed.

We can assess the linear stability of the evolved mean flow using the approach of
§ 3.7. The evolving linear growth rate s = δs1 + O(δ2), where

s1 = 1− α− k2B =
dA/dτ

A
.

The stable fixed point corresponds exactly to s1 = 0. Here, to leading order, the mean
flow is exactly neutralized to linear disturbances. Thus, in phase space, the system
moves from an unstable fixed point to a stable fixed point, corresponding to a mean
flow change from a state of weak instability to one of neutral stability. As shown in
figure 9, during the evolution, typically the magnitude B of the mean flow change
will overshoot that required for neutral stability. However, the damping is continually
trying to eradicate the mean flow change, so that B is subsequently reduced, leading
to decaying oscillations about the stable fixed point.

This sort of damped regime was the focus of the numerical study by Hua et al.
(1997). In their non-hydrostatic numerical simulations, typically δ ≈ 0.3 and α ≈ 0.75,
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Figure 9. The streamfunction amplitude |A(τ)| against the mean flow change B(τ), as determined
by the amplitude equations (5.2a) and (5.2b), for |A0| = 0.01 and k2 = 0.510: ——, evolution for
α = 0.1; – – –, evolution for α = 0.

so that the system was close to equilibrium. They found an inertial instability with
equilibration to a state with finite-amplitude baroclinic jets, exactly the sort of be-
haviour described by (5.2a) and (5.2b).

Hua et al. (1997) also used a large horizontal diffusivity νy in their simulations. As
a consequence, even in their run at δ = 0.07 with α = 0 (see their figure 2), they found
equilibration to a state with baroclinic jets (albeit of small amplitude). However,
as we have seen in §§ 3 and 4, when α = 0, the flow equilibrates to a barotropic
state if νy = 0. Presumably, their results were affected by the presence of horizontal
diffusion, which we anticipate would act somewhat like a relaxational term on the
mean flow.

Zhao & Ghil (1991) also considered the effects of Rayleigh friction and Newtonian
cooling in a study of weakly nonlinear inertial instability. However, in their study,
the weak nonlinearity came from artificially restricting the vertical wavenumber to
be near the buoyancy cut-off wavelength, rather than by restricting the growth rate
by vertical diffusion. Thus, the dynamics they found were quite different to those
described here.

5.2. An envelope of unstable modes

As shown in § 3.1, and illustrated in figure 1, when ε = εc(1 − δ/δ0) there is a band
of unstable wavenumbers of width O(δ1/2) around m = mc. To take account of the
possible simultaneous growth and interaction of all these modes, we can consider
the evolution of a mode ψ(y, z, t) = Re{A(Z, τ)Ψ (y) exp(imcz)}, where Z = δ1/2z is
a slowly varying vertical coordinate. A modified weakly nonlinear analysis can be
performed, similar to that of §§ 3.2–3.5, taking account of this new vertical structure.
The details are given in Griffiths (2000). The horizontal structure of the mean flow
change is the same as before, but the amplitude equations are

∂B

∂τ
= |A|2 + εc

∂2B

∂Z2
,

∂A

∂τ
= A+ 1

2
r2 ∂

2A

∂Z2
− k2AB,

subject to A(0) = A0, B(0) = 0, where r2 = Dmm(mc, 0, εc)/Ds(mc, 0, εc) > 0, using (2.16)
and (3.1). Here, B(Z, τ) is the amplitude of the mean flow change, as in (5.1). Owing to
the diffusive form of the additional terms in this coupled system, it is anticipated that
the dynamics will not differ considerably from those of the Z-independent system.
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6. Conclusions
6.1. Summary

We have studied the zonally symmetric inertial instability of uniformly stratified
equatorial shear flows of the form u = u0(y), with corresponding potential vorticity
Q0(y). If fQ0 < 0 somewhere, then the flow will be linearly unstable, provided the
vertical diffusion is sufficiently small. However, as the vertical diffusion increases,
the growth rate of the most unstable linear mode decreases monotonically, and
eventually becomes zero. We chose to measure the strength of the instability by
a non-dimensional parameter δ, related to the vertical diffusion, as well as to the
strength of the stratification, the cross-equatorial shear and the β-effect, such that the
most unstable linear mode has growth rate δ as δ → 0.

For the regime δ � 1, we performed a weakly nonlinear analysis, deriving equations
for the amplitude of the most unstable mode, and for the mean-flow change. By
analysing the linear stability properties of the evolving mean flow, we gained a
clear qualitative understanding of nonlinear inertial instability. There is disturbance
growth then decay, accompanied by neutralization then stabilization of the mean flow.
Further, the system has a long memory: the maximum disturbance amplitude and
the magnitude of the mean-flow change depend on the initial disturbance amplitude.
However, weak damping (in the form of Rayleigh friction and Newtonian cooling)
radically alters the nonlinear evolution, leading to an evolved state with a neutrally
stable mean flow, and a persistent streamfunction disturbance. The long-memory
property is destroyed.

For the particular case of a uniform shear flow, numerical simulations showed that
the quantitative applicability of the weakly nonlinear analysis is limited to just a
small range of δ, perhaps 0 6 δ < 0.05. However, the numerical simulations also
suggest that the qualitative applicability is good, since for 0 6 δ < 0.3 we see the same
qualitative features. Further, in the moderately unstable regime, say 0.1 6 δ < 0.3, the
action of the instability on the mean flow is to create a region, around the initially
most unstable latitude, in which fQ is homogenized to a small negative value. We
might expect this sort of homogenization to be the generic action of inertial instability
for any unstable mean flow in this regime, not just for that with uniform latitudinal
shear. We also argued that, during the instability, the disturbances will necessarily
shift polewards to effect an efficient neutralization, and noted that the line of zero
mean potential vorticity moves polewards too, rather than equatorwards.

6.2. Discussion

The numerical simulations showed that for δ = 0.3 there are regions of the flow in
which the Richardson number falls to less than 0.25. Thus, in reality we would expect
secondary Kelvin–Helmholtz instabilities to occur, and to significantly modify the
evolution in this case. Since the Kelvin–Helmholtz instability occurs on small hori-
zontal scales, and would have longitudinal dependence, large-scale zonally symmetric
simulations are unable to capture this additional behaviour, and hence are unrealistic
for δ & 0.3. Some possible consequences of this are discussed elsewhere (Griffiths
2002).

The imposition of zonal symmetry on both the analysis and the simulations leads
to other restrictions. For instance, even though the uniform shear flow studied is
barotropically stable, the simulations show that for δ & 0.15 the evolving mean flow
tends to display regions of reversed potential vorticity gradients on both sides of
the equator. Thus, if zonally asymmetric perturbations were permitted, the evolving
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mean flow could be susceptible to barotropic shear instability. This idea has been
somewhat explored by Limpasuvan et al. (2000), as a mechanism for the generation
of the upper-stratospheric two-day wave. In a zonally symmetric model, it would be
possible to investigate the effect of such instabilities on the evolution of the mean
flow by incorporating a barotropic shear adjustment scheme (perhaps by adapting
the approach of Haynes 1989).

The fully three-dimensional stability properties of the zonally symmetric flow have
also been ignored. In the weakly nonlinear regime, it seems that zonally asymmet-
ric modes of inertial instability are faster growing than zonally symmetric modes
(Dunkerton 1983). Thus, even though the fastest growing zonally symmetric mode
has been analysed, it may not be the fastest growing mode in three-dimensional
reality. Whether the weakly nonlinear evolution of the zonally asymmetric modes is
radically different from the zonally symmetric evolution remains to be seen.

6.3. Relation to inertial instability in the stratosphere and mesosphere

Structures attributable to equatorial inertial instability have been observed in the
Earth’s atmosphere at about 40–60 km altitude, that is in the upper stratosphere and
lower mesosphere (e.g. Hitchman et al. 1987; Hayashi et al. 1998; Smith & Riese
1999). The observed temperature perturbations, with a vertical wavelength of about
10 km, typically appear close to the equator with antiphased structures about 30◦ into
the winter hemisphere. Does this inertial instability fall into the weakly nonlinear
regime considered here? Putting aside for the moment the physical basis for being
in such a regime, and, in particular, the need for an unrealistically large vertical
diffusion, let us compare the magnitude, temporal behaviour and spatial structure of
the observations with those of the weakly nonlinear perturbations described here.

Given that the observed temperature perturbations are typically 5–8 K, we might
be tempted to think that they are simply too large to be of a weakly nonlinear origin.
However, for a structure with a vertical wavelength of 10 km, even vertical displace-
ments of a fraction of a wavelength can lead to large temperature perturbations.
We can quantify this. In the Boussinesq approximation, temperature perturbations
T ′ are associated solely with density perturbations ρ′, and not with pressure pertur-
bations. Therefore, in dimensional variables, T ′/T00 ≈ −ρ′/ρ00 = σ′/g, where T00 is
a background reference temperature. Or, in terms of the non-dimensional buoyancy
acceleration fluctuation σ̂′, the temperature perturbation will be T ′ = (N2T00/gms)σ̂

′.
For δ = 0.1, and u0 = Λy, the maximum non-dimensional buoyancy acceleration
fluctuation was found in the numerical simulations to be σ̂′ = 0.27. Hence, for a
disturbance with a vertical wavelength of 10 km (i.e. ms ≈ 6× 10−4 m−1), and taking a
background temperature T00 = 260 K (typical of conditions around 50 km altitude),
the maximum temperature perturbation T ′ ≈ 5 K. Given that the maximum ampli-
tude of the perturbations could be increased by some initial excitation, this scale is
consistent with the observed temperature perturbations of 5–8 K.

What about the timescale for the growth and decay of the disturbances? The weakly
nonlinear (e-folding) timescale for growth (or decay) is ( 1

2
δΛ)−1. Near solstice, Λ can

be as large as 5 day−1 (see, for instance, figure 3 of Hitchman & Leovy 1986), so that
for δ = 0.1, we obtain a timescale of about four days. The observed structures grow
and decay over a period of about two weeks. Hence, the timescale is quite consistent
with a weakly nonlinear instability.

Also note that the observed latitudinal and vertical scales are consistent with a
weakly nonlinear inertial instability. For Λ = 5 day−1, and taking β = 2.3× 10−11 m−1

s−1, the unstable region extends from the equator to about 20◦ into the winter
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hemisphere. According to the linear theory, the poleward temperature extremum
must occur equatorward of 20◦. However, the simulations showed how, during the
nonlinear phase of the instability, this temperature extremum moves further polewards,
to y ≈ 1.4Λ/β, for δ ≈ 0.2. Thus, at maximum disturbance amplitude, for δ ≈ 0.2,
we expect to see the maximum temperature perturbation about 30◦ into the winter
hemisphere. This is consistent with the observations, whereas to explain the position
of the poleward temperature extrema using the linear theory, we have to invoke
unappealingly large horizontal shears.

However, the background conditions are unlikely to be consistent with a simple
weakly nonlinear scenario. Taking N = 0.02 s−1, for the most unstable vertical wave-
length to be 10 km, the minimum shear required is 5.2 day−1. The corresponding
vertical diffusivity is 33 m2 s−1, although this can be somewhat reduced if we consider
even larger shears. Such diffusivities are usually regarded as unrealistically large.
If somehow such a large diffusivity does exist in the upper stratosphere and lower
mesosphere, then the magnitude, time scales and spatial structure of the observed
instability are all consistent with a weakly nonlinear origin, of the type described
here. It seems likely that this is not the case. The observed structures may well
correspond to modes towards the buoyancy cut-off wavelength, with a relatively
small linear growth rate compared with the inviscid maximum, but it may be that
something other than diffusion is suppressing the shorter wavelength modes. A pos-
sible mechanism for this, involving the suppression of the shorter wavelength modes
by a secondary Kelvin–Helmholtz instability, is discussed in Griffiths (2002). Even
so, the basic nonlinear mechanisms highlighted in this simple study are likely to
remain relevant in more complicated settings, such as is likely in the real atmo-
sphere.

Part of this work was supported by NERC under award number GT4/96/40/M.
Special thanks must be given to Michael McIntyre and Peter Haynes. Other helpful
comments or assistance have been given by Mike Greenslade and Jacques Vanneste.

Appendix
We wish to investigate the variation of the growth rate s for inertially unstable

modes as we vary ε, for a fixed basic flow in physical space. Unfortunately, in our
non-dimensionalization, both f and Q0 become functions of y and ε. In this Appendix,
it proves convenient to use a non-dimensionalization in which fQ0 remains constant
as we vary ε, for a fixed basic flow in physical space. We ensure this by working with
a rescaled (non-dimensional) coordinate ỹ = ε1/2y, so that f = yc + 2ỹ, and Q0 is a
function of ỹ alone. With this small change, we write the eigenvalue equation (2.11)
as

4ε2

m2

d2Ψi

dỹ2
− fQ0(ỹ)Ψi = λiΨi, |Ψi| → 0 as |ỹ| → ∞, (A 1)

where λi(m, ε) = (si + εm2)2, and i > 0. We assume that Q0 ∼ f as |ỹ| → ∞.
Then, according to Sturm–Liouville theory (e.g. Titchmarsh 1962), there exists a
discrete, infinite spectrum of distinct eigenvalues. At given (m, ε), we order the eigen-
values so that λi > λi+1. The corresponding normalized eigenfunctions Ψi(ỹ) satisfy∫ ∞
−∞ΨiΨjdỹ = δij , and are complete for sufficiently well-behaved functions decaying

to zero as |ỹ| → ∞.
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We introduce the functional

I(Φ,m, ε) =

∫ ∞
−∞

(−fQ0)Φ
2dỹ − (4ε2/m2)

∫ ∞
−∞

(dΦ/dỹ)2dỹ∫ ∞
−∞
Φ2dỹ

, (A 2)

where Φ(ỹ) is a sufficiently well-behaved function decaying to zero as |ỹ| → ∞. It is
easy to see that I(Ψi, m, ε) = λi(m, ε), and by writing Φ(ỹ) =

∑∞
i=0 ciΨi(ỹ) that

I(Φ,m, ε) =

∑
λic

2
i∑

c2
i

6 λ0(m, ε) 6 (−fQ0)max. (A 3)

In particular, at ε = εa suppose there exist growing modes, and let the maximum
value of s0(m, εa) with respect to m occur at m = ma. We denote this maximum value
by sa, and the corresponding eigenfunction by Ψa. Then, when ε = εb < εa,

λ0(ma, εb) > I(Ψa,ma, εb) > I(Ψa,ma, εa) = λ0(ma, εa),

the first inequality following using (A 3), and the second using (A 2) since εb < εa.
Equivalently,

(s0(ma, εb) + εbm
2
a)

2 > (sa + εam
2
a)

2.

Taking the positive square root for the growing modes, we have

s0(ma, εb) > sa + (εa − εb)m2
a > sa since εb < εa.

The maximum growth rate sb at ε = εb satisfies sb > s0(ma, εb). Thus, sb > sa, and the
maximum growth rate monotonically increases as ε decreases.

We conclude by deriving the limiting value of s as ε→ 0. Since we have taken the
maximum value of (−fQ0) to occur at y = 0, and hence at ỹ = 0,

0 6 (−fQ0)max − (−fQ0) =

∫ ỹ

0

d

dỹ
(fQ0) dỹ 6 sgn(ỹ)

∫ ỹ

0

∣∣∣∣ d

dỹ
(fQ0)

∣∣∣∣ dỹ. (A 4)

Since f ∼ Q0 ∼ 2ỹ as |ỹ| → ∞, |d(fQ0)/dỹ| < 8C|ỹ| for some constant C > 0. Then
(A 4) ⇒ 0 6 (−fQ0)max − (−fQ0) < 4Cỹ2, so that, using (A 2),

(−fQ0)max − I(Φ,m, ε) 6

∫ ∞
−∞

4Cỹ2Φ2dỹ + (4ε2/m2)

∫ ∞
−∞

(dΦ/dỹ)2dỹ∫ ∞
−∞
Φ2dỹ

.

Taking Φ = exp(−mỹ2/2ε) gives (−fQ0)max − I 6 2ε(C + 1)/m. Then, using (A 3), we
have

(−fQ0)max − 2ε(C + 1)

m
6 λ0(m, ε) 6 (−fQ0)max

for the eigenvalue λ0. Setting m = 1 and letting ε → 0, we see that λ0 → (−fQ0)max,
or equivalently s20 → (−fQ0)max. Thus, if (−fQ0)max < 0, s0 → ((−fQ0)max)

1/2 for some
mode as ε→ 0, i.e. the maximum possible growth rate is achieved.
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